1.)
 Graphing Vector Fields:

a.) $\quad U(x, y z)=\langle x,-y\rangle$
$[\mathrm{x}, \mathrm{y}]=$ meshgrid($-3: 1: 3,-3: 1: 3$);
$\mathrm{u}=\mathrm{x}$;
$v=-y ;$
figure
quiver (x, y, u, v)

b.) $\quad V(x, y, z)=\langle y,-x\rangle$

```
[x,y,z]= meshgrid(-3:1:3,-3:1:3,-3:1:3);
u = Y;
v = -x;
figure
quiver(x,y,u,v)
```


c.) Calculate the divergence and curl of both vector fields above and plot by Matlab.
a.) Divergence: $\nabla \cdot\{x,-y, 0\}=0, \mid \operatorname{Curl}: \nabla \times\{x,-y, 0\}=\langle 0,0,0\rangle$
b.) Divergence: $\nabla \cdot\{y,-x, 0\}=0, \mid$ Curl: $\nabla \times\{y,-x, 0\}=\langle 0,0,2\rangle$
2.)

$$
x=10 \sin (5 t)-10, y=10 \cos (5 t), z=20 t
$$

a.) A helix located at the origin has a radius of 10 m and rises at a speed of $\mathbf{2 0 m}$.

Matlab Code:

ezplot3(10*sin(5*t)10,10* $\cos \left(5^{*} \mathrm{t}\right), \mathrm{z},\left[0,2^{*}\right.$ pi])
b.) An ellipse located at point $(2,1)$ and has a radius of 2 m on x axis and $\mathbf{3} \mathrm{m}$ on y axis.

3.)

Graphing surfaces:

b.) A cylinder located at the origin, has a radius of 5 m .
a.) A sphere located at the origin, has a radius of 5 m . Matlab Code:
figure
ezsurf('5* $\left.\sin (u)^{*} \cos (v)^{\prime}, ' 5 * \sin (u)^{*} \sin (v)^{\prime}, ' 5 * \cos (u)^{\prime},\left[0 \mathrm{pi}, 02{ }^{*} \mathrm{pi}\right]\right)$;

c.) A cone located at the origin has a floor radius of 5 m , and height of 5 m . The tip of the cone touches the origin.

Matlab code:
figure

$$
\text { ezsurf('5* } \left.\cos (u)^{*} v^{\prime}, ' 5 * \sin (u)^{*} v^{\prime}, ' 5 * v^{\prime},[02 * \text { pi } 01]\right) ;
$$

